Dual generalized Bernstein basis
نویسندگان
چکیده
The generalized Bernstein basis in the space Πn of polynomials of degree at most n, being an extension of the q-Bernstein basis introduced recently by G.M. Phillips, is given by the formula (see S. Lewanowicz & P. Woźny, BIT 44 (2004), 63–78) Bn i (x;ω| q) := 1 (ω; q)n [ n i ] q x (ωx−1; q)i (x; q)n−i (i = 0, 1, . . . , n). We give explicitly the dual basis functions Dn k (x; a, b, ω| q) for the polynomials Bn i (x; ω| q), in terms of big q-Jacobi polynomials Pk(x; a, b, ω/q; q), a and b being parameters; the connection coefficients are evaluations of the q-Hahn polynomials. An inverse formula – relating big q-Jacobi, dual generalized Bernstein, and dual q-Hahn polynomials – is also given. Further, an alternative formula is given, representing the dual polynomial Dn j (0 ≤ j ≤ n) as a linear combination of min(j, n− j)+1 big q-Jacobi polynomials with shifted parameters and argument. Finally, we give a recurrence relation satisfied by Dn k , as well as an identity which may be seen as an analogue of the extended Marsden’s identity.
منابع مشابه
New operational matrix for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative
In this paper, we apply spectral method based on the Bernstein polynomials for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative. In the first step, we introduce the dual basis and operational matrix of product based on the Bernstein basis. Then, we get the Bernstein operational matrix for the Jumarie’s modified Riemann-Liouville fractio...
متن کاملGeneralized Tschebyscheff of the Second Kind and Bernstein Polynomials Change of Bases
We constructmultiple representations relative to different bases of the generalized Tschebyscheff polynomials of second kind. Also, we provide an explicit closed from of The generalized Polynomials of degree r less than or equal n in terms of the Bernstein basis of fixed degree n. In addition, we create the change-of-basis matrices between the generalized Tschebyscheff of the second kind polyno...
متن کاملA new type of the generalized Bézier curves
In this paper, we improve the generalized Bernstein basis functions introduced by Han, et al. The new basis functions not only inherit the most properties of the classical Bernstein basis functions, but also reserve the shape parameters that are similar to the shape parameters of the generalized Bernstein basis functions. The degree elevation algorithm and the conversion formulae between the ne...
متن کاملNumerical solution of nonlinear Hammerstein integral equations by using Legendre-Bernstein basis
In this study a numerical method is developed to solve the Hammerstein integral equations. To this end the kernel has been approximated using the leastsquares approximation schemes based on Legender-Bernstein basis. The Legender polynomials are orthogonal and these properties improve the accuracy of the approximations. Also the nonlinear unknown function has been approximated by using the Berns...
متن کاملWeighted dual functions for Bernstein basis satisfying boundary constraints
In this paper, we consider the issue of dual functions for the Bernstein basis which satisfy boundary conditions. The Jacobi weight function with the usual inner product in the Hilbert space are used. Some examples of the transformation matrices are given. Some figures for the weighted dual functions of the Bernstein basis with respect to the Jacobi weight function satisfying boundary condition...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Approximation Theory
دوره 138 شماره
صفحات -
تاریخ انتشار 2006